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ABSTRACT
Population-based human exposure models predict the
distribution of personal exposures to pollutants of out-
door origin using a variety of inputs, including air pollu-
tion concentrations; human activity patterns, such as the
amount of time spent outdoors versus indoors, commut-
ing, walking, and indoors at home; microenvironmental
infiltration rates; and pollutant removal rates in indoor
environments. Typically, exposure models rely upon am-
bient air concentration inputs from a sparse network of
monitoring stations. Here we present a unique method-
ology for combining multiple types of air quality models
(the Community Multi-Scale Air Quality [CMAQ] chemi-
cal transport model added to the AERMOD dispersion
model) and linking the resulting hourly concentrations to
population exposure models (the Hazardous Air Pollutant

Exposure Model [HAPEM] or the Stochastic Human Expo-
sure and Dose Simulation [SHEDS] model) to enhance
estimates of air pollution exposures that vary temporally
(annual and seasonal) and spatially (at census-block-
group resolution) in an urban area. The results indicate
that there is a strong spatial gradient in the predicted
mean exposure concentrations near roadways and indus-
trial facilities that can vary by almost a factor of 2 across
the urban area studied. At the high end of the exposure
distribution (95th percentile), exposures are higher in the
central district than in the suburbs. This is mostly due to
the importance of personal mobility factors whereby in-
dividuals living in the central area often move between
microenvironments with high concentrations, as op-
posed to individuals residing at the outskirts of the city.
Also, our results indicate 20–30% differences due to com-
muting patterns and almost a factor of 2 difference be-
cause of near-roadway effects. These differences are
smaller for the median exposures, indicating the highly
variable nature of the reflected ambient concentrations.
In conjunction with local data on emission sources, mi-
croenvironmental factors, and behavioral and socioeco-
nomic characteristics, the combined source-to-exposure
modeling methodology presented in this paper can im-
prove the assessment of exposures in future community
air pollution health studies.

INTRODUCTION
Many epidemiological studies have documented poor air
quality as a risk factor for a variety of human health
outcomes. For example, the cardiac and respiratory effects
of air pollution range from decreased lung function1,2 to

IMPLICATIONS
This paper presents a new methodology to demonstrate
the linkage of regional- and local-scale air quality models
with human exposure models for improving community-
level environmental health studies involving near-source
exposures to multiple ambient air pollutants. The extent of
variability in spatial and temporal concentration gradients
associated with large point sources and roadways shown
in this research is especially important given the grow-
ing body of literature on the potential adverse health ef-
fects associated with elevated concentrations near such
sources.

TECHNICAL PAPER ISSN:1047-3289 J. Air & Waste Manage. Assoc. 59:461–472
DOI:10.3155/1047-3289.59.4.461
Copyright 2009 Air & Waste Management Association

Volume 59 April 2009 Journal of the Air & Waste Management Association 461



exacerbation of symptoms of asthma3,4 and chronic bron-
chitis3 to more serious cardiopulmonary events, such as
increased hospitalizations4,5 or mortality.6,7

Understanding the magnitude and nature of human
exposure is clearly the first step in assessing the likelihood
of adverse health effects that could result from contact
with environmental pollutants. Undertaking this type of
research requires identification of the key sources and
constituents of indoor and outdoor air pollutants of
health concern, such as particulate matter (PM), ozone,
and determination of personal exposures to these pollut-
ants.8,9 However, necessary information on personal ex-
posures is often not readily available, and therefore, var-
ious surrogates of personal exposure are typically used
instead.

For criteria pollutants, available ambient monitoring
data from a central outdoor monitoring station has been
historically used in air pollution epidemiology stud-
ies.10,11 The direct use of such data inherently assumes
that these ambient measurements are representative of
the air quality over a broad area. Also, these studies as-
sume that a single monitor, or an average of only a few
monitors, is representative of complex patterns of expo-
sures within a large urban area. Moreover, for toxic pol-
lutants, monitoring data are often nonexistent or limited
because regulatory compliance monitoring stations do
not always measure air toxic pollutants. Also, many toxic
pollutants can have large concentration gradients, espe-
cially near large emitters such as major roadways, and
require the use of many closely spaced monitors to ap-
proximate community impacts.12,13 These and other lim-
itations may hamper the use of ambient air quality data
alone as a reliable proxy of personal or population expo-
sures when investigating health effects due to either the
short- or long-term exposures to air toxic pollutants.

Recently, more refined approaches have been used in
epidemiological studies to enhance the spatial resolution
of monitoring data by applying geographic information
systems (GIS)-based interpolation methods to approxi-
mate outdoor concentrations near communities.14 Some
researchers have used Land Use Regression (LUR) models
in the analysis of cohort study health data. These LUR
models incorporate landscape characteristics such as
proximity to roadways and other outdoor sources of air
pollution.15–19 Other researchers have used air quality
models and microenvironmental personal exposure mod-
eling tools to support air pollution exposure and health
studies.11,20–24 A few studies have also used results from
atmospheric dispersion models in the analysis of health
data.25–27

These approaches may improve the spatial resolution
of ambient outdoor concentrations; however, they do not
address the fact that people spend the majority of their
time indoors.28 Individuals spend time in different micro-
environments during the day (e.g., indoors and outdoors
at residences, commuting, at school or workplace, etc.)
and may experience varying levels of exposure to air pol-
lutants of outdoor origin in these microenvironments.
Thus, to accurately characterize the exposure, it is impor-
tant to determine the relative contributions of air pollut-
ants in microenvironments of concern to human expo-
sures.29,30 Although air quality modeling is a preferred

approach to improve spatial/temporal resolution of air
pollutant concentrations, exposure models are designed
to utilize modeled air concentrations, combined with hu-
man activity data and indoor/outdoor relationships for
pollutants, to estimate distributions of exposures for pop-
ulations of interest. Thus, linking air quality with expo-
sure models can better account for human mobility and
indoor exposure issues.

In this paper, we present a new methodology for
using a hybrid air quality modeling approach31 that com-
bines results from a grid-based chemical transport model
with a local plume dispersion model to provide spatially
and temporally resolved air quality concentration esti-
mates at the census-block-group level and link these air
quality estimates with human exposure models also at
census-block-group resolution. Thus, instead of assuming
uniform distribution of exposures over a large urban area
if central site monitoring data are solely used, we use here
two different exposure models developed by the U.S. En-
vironmental Protection Agency (EPA) (the Hazardous Air
Pollutant Exposure Model [HAPEM]32 and the Stochastic
Human Exposure and Dose Simulation [SHEDS] mod-
el20,23) to produce spatially and temporally resolved ex-
posure estimates. Both of these models require input in-
formation on time activity and commuting patterns;
microenvironmental concentrations; air exchange rates;
heating, ventilation, air conditioning, and housing char-
acteristics; and pollutant penetration and removal rates.

We demonstrate how this linked air quality/exposure
modeling approach may be used in future community
health studies by providing exposure estimates that re-
flect residences in proximity to large industrial facilities or
major roadways. We present the results from this ap-
proach for two pollutants: benzene, an example of an
important urban air toxics pollutant; and fine PM (PM2.5),

an example of a major local- and regional-scale criteria
pollutant of concern. This research is an important com-
ponent of an EPA feasibility study being conducted in
New Haven, CT, that examines the cumulative impact of
various air pollution reduction activities (at the local,
state, and national level) on changes in air quality con-
centrations, human exposures, and potential health out-
comes in the community. In conjunction with local data
on emission sources, demographic and socioeconomic
characteristics, and indicators of exposure and health, the
methodology presented in this paper can serve as a pro-
totype for providing high-resolution exposure data in fu-
ture community air pollution health studies. For example,
these methodologies can be used to provide the baseline
air quality assessments of impacts due to regional- or
local-scale air pollution control measures and to estimate
the likely impact of future projected air pollution control
measures on human exposures and health in the com-
munity that are dependent on air pollution reduction
activities or are due to the addition of new sources in a
community.

AIR QUALITY MODELING
Detailed information on air quality is a key concern for
air-pollution-related environmental health studies. To
provide the best estimates of air concentrations, air qual-
ity modeling estimates should include local-scale features,
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long-range transport, and photochemical transforma-
tions. There are several available modeling approaches
capable of assessing pollutant concentration gradients at
a fine resolution33 and these can be categorized into two
major types of air quality models: source-based dispersion
models and Eulerian grid-based chemical transport mod-
els. Grid-based chemical transport models such as the
Community Multi-scale Air Quality (CMAQ)34 model are
used to simulate the transport and formation of ozone,
acid rain, PM2.5, and other pollutants formed by chemical
reactions among precursor species that are emitted from
hundreds or thousands of sources. CMAQ provides aver-
age hourly concentration values for each grid cell in the
modeling domain. Such models may be set up to be
applied to a wide range of spatial scales ranging from
national to urban. However, these models cannot address
the local-scale processes affecting pollutant gradients
such as those occurring close to roadways.

Local plume dispersion models such as AERMOD35 are
designed to capture local pollutant concentration gradients
(e.g., within a few kilometers from the source) and can
provide detailed resolution of the spatial variations in
hourly average concentrations. However, they do not take
into account atmospheric chemical reactions, except for
highly simplified representations such as first-order pollut-
ant decay. Although it is desirable to combine the capabili-
ties of grid-based models and dispersion models into one
model, this an evolving area of research. Currently, a hybrid
approach31,36 is the most computationally efficient way to
combine regional-scale photochemical grid and local-scale
plume dispersion models to provide the total ambient air
pollutant concentrations from nearby and distant sources.
Because dispersion models are less resource intensive than
regional models, a hybrid methodology can be used to study
the sensitivity of local concentration to changes in model
parameters. This constitutes a clear advantage of the hybrid
approach, because the estimation of local concentration
variability using a photochemical grid model at higher res-
olution would be a computationally resource-intensive task,
especially when annual concentrations over larger urban
areas are needed.

In the hybrid modeling approach, concentrations from
a grid-based chemical transport model and a local plume
dispersion model are added to provide contributions from
photochemical interactions, long-range (regional) trans-
port, and details attributable to local-scale dispersion.31

However, combining the results from such models is not
straightforward because the same emission sources may be
included in both types of models and adding the modeled
concentrations could result in double-counting the impact
of these sources. To avoid this double-counting problem, a
“zero-out” approach can be used.33,36 In this approach, two
regional model simulations are conducted: one for the base
case in which local emission sources are included, and an-
other simulation (zero-out) in which the local emissions are
excluded. The difference in concentrations between these
two simulations provides an indication of the magnitude of
the impacts from local emission sources. This approach was
not used in this paper because of various constraints; how-
ever, the difference between the results based on this ap-
proach and the hybrid approach that was used here needs to
be further investigated. However, in one study, Stein et al.36

compared the zero-out approach with the hybrid approach
for benzene concentrations in Houston, TX, and also com-
pared the zero-out approach with a simple combination of a
local- and regional-scale modeling. The comparison showed
that this difference was less than 10%, and therefore, we
believe that the double-counting effects have no noticeable
impacts in our example.

EXPOSURE MODELING
Rather than assuming ambient air concentrations are
equivalent to exposure concentrations, exposure models
are designed to better represent human contact with pol-
lutants and to some degree account for human behavior
and physiology. Population-based exposure models pro-
vide estimates of the range of exposures for a population
of interest and the fraction of population above a level of
concern. Two physically based probabilistic population
exposure models were used in this study, HAPEM and
SHEDS. Both models use census demographic data to sim-
ulate a representative population and combine air pollut-
ant concentrations with human activity pattern data to
estimate actual human exposures. These exposure models
produce population distributions of exposures at the spa-
tial resolution defined by the census data used (e.g., cen-
sus tract, block group, or block), and can utilize modeled
air pollutant concentrations at the same resolution. The
main difference between the models is in the temporal
resolution and how input concentration data are used to
predict microenvironmental and personal exposures.
Some of the key features of these models are described in
the following sections.

HAPEM Model
HAPEM is a screening-level stochastic exposure model
appropriate for assessing average long-term inhalation
exposures of the general population, or a specific sub-
population, and over spatial scales ranging from local to
national. The simulated population is first stratified ac-
cording to demographic variables, such as age and gender.
HAPEM uses the general approach of tracking representa-
tives of the demographic groups as they move among
indoor and outdoor microenvironments (MEs; i.e., a lo-
cation in which human contact with an ambient pollut-
ant may take place) according to human time-activity
data (i.e., sequences of activities for an individual), corre-
sponding durations, and ME locations (e.g., at home for
45 min, followed by driving in a car for 20 min). The
estimated pollutant concentrations in each ME visited are
combined with the fraction of time spent in that ME to
calculate a time-weighted average exposure concentration
for a representative individual assigned to a particular
demographic group.37

HAPEM uses four primary sources of information:
population data from the U.S. Census, population activity
data, air quality data, and microenvironmental data. Four
standard databases are used in HAPEM: the 2000 U.S.
Census provides population demographics38; statistical
distributions of ME factors derived from various literature
sources are used in a Monte Carlo sampling framework to
estimate ME concentrations; EPA’s Consolidated Human
Activity Database (CHAD) provides daily human time-
location-activity patterns39; and air quality data for each
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specified demographic group. To simulate activity se-
quences over long periods of time, HAPEM combines
CHAD-analyzed daily time-activity patterns with an algo-
rithm that reflects day-to-day correlations for a simulated
individual with a combination of cluster analysis and a
Markov selection process. HAPEM also includes commute
and near-roadway databases.11

The HAPEM model requires annual-averaged, diur-
nally distributed air quality levels at eight 3-hr intervals
(e.g., 0–3, 3–6, etc.). In addition, HAPEM can also evalu-
ate the contributions of subsets of the air quality data
(e.g., air concentration values for specific source sectors
such as point, area, and mobile sources). Although the air
concentration data input to HAPEM must be in a specific
format (e.g., annual average and diurnally distributed),
the source of the data could be either from an air disper-
sion model or an ambient monitor.

HAPEM was originally designed to estimate annual
average concentrations at the spatial resolution of U.S.
Census tracts. For this study, HAPEM6 was modified to
operate at finer temporal resolution (i.e., seasonal and
monthly averages) and finer spatial resolution (i.e., U.S.
Census block groups and blocks). In this application,
modeled annual average ambient air concentrations esti-
mated for each U.S. Census block group in New Haven,
CT, was input in HAPEM6.

Another modification made to HAPEM6 for this
study was the capability of considering correlations in
exposure concentrations from multiple pollutants for a
simulated individual. For example, an individual who
spends more time on the roadways than average would be
expected to have relatively high exposure concentrations
for all on-road-related pollutants. Some exposure models
accomplish this by estimating exposure concentrations to
multiple pollutants in a single simulation (e.g., APEX40).

Although HAPEM is typically used to predict exposures
to a single pollutant at a time, it can be configured to
estimate exposures to multiple pollutants. Probabilistic
models such as HAPEM randomly select activity patterns
and other variables for simulated individuals. If a model can
ensure that the random elements are selected in the same
sequence for each simulation, then the simulated individu-
als and their associated exposure concentrations can be
matched from one simulation to the next. Thus, by tracking
the random seed used in each of the exposure simulations,
it is possible to ensure that the same set of time-activity
patterns, ME factors, and other randomly selected attributes
are assigned to the same individual while predicting expo-
sures to multiple pollutants. In essence, this approach has
been used in the application of HAPEM to predict exposures
to multiple air toxics. For this study, ME factor distributions
developed for the recent National Air Toxics Assessment37

were incorporated into both HAPEM and SHEDS. Both mod-
els were then applied to the ambient air concentration pre-
dictions from the air modeling portion of the study to esti-
mate exposure concentrations across the population of the
modeling domain.

SHEDS Model
SHEDS is a stochastic exposure model appropriate for
more detailed assessments of short- or long-term inhala-
tion exposures and intake dose at the local to regional

scale. The SHEDS model randomly generates a population
of individuals to be simulated on the basis of census
demographic data (gender/age proportions) that statisti-
cally represent a defined percentage of the population for
the study area (i.e., 10% of the total population), rather
than particular demographic groups as done in HAPEM. A
time series of locations and activities is randomly assigned
to each simulated individual through the use of time-
location-activity diaries appropriately matched to each
simulated individual by demographics and other charac-
teristics such as employment status.39 In addition, gen-
der- and age-appropriate physical attributes (e.g., body
weight) are randomly assigned to each individual for es-
timating intake dose. Similar to HAPEM, an individual’s
time-location-activity data are combined with the micro-
environmental concentration estimates to calculate each
individual’s time-weighted average exposure concentra-
tion. However, SHEDS has flexibility in the time resolu-
tion of the microenvironmental and exposure concentra-
tion calculations on the basis of the type of input
concentrations provided (i.e., hourly average, daily aver-
age, etc.) and in the complexity of the algorithms used for
estimating concentrations in the various MEs (i.e., how
indoor sources are handled). In addition, SHEDS includes
algorithms for estimating intake dose on the basis of
activity-specific breathing rates.

In this study, SHEDS was applied to the 318 census
block groups in New Haven, CT, using the same time
series of ambient concentrations for each census block
group as for the HAPEM6 simulations. SHEDS estimated
simultaneous exposures to multiple pollutants for each
simulated individual.

RESULTS AND DISCUSSION
To illustrate an application of the hybrid air quality mod-
eling approach to provide resolved local-scale pollutant
concentrations, this study was part of a feasibility study to
assess public health impacts of cumulative air pollution
reduction activities in New Haven, CT. The city of New
Haven, with an estimated 2006 population of approxi-
mately 127,000, is small compared with other urban cen-
ters in the United States, but it includes many stationary
sources such power plants, large ports and marine termi-
nals, and several major roadways such as Interstates 91
and 95 (Figure 1). Here we focus on a 20- by 20-km area
that covers most of these emission sources. This city was
selected because it was a recipient of one of EPA’s nation-
ally funded Community Air Toxics projects. Through this
project, New Haven has implemented a comprehensive
Clean Air Initiative, which includes several voluntary air
pollution reduction measures to reduce both criteria and
toxic air pollutants.41 The city of New Haven has begun
implementing some of the air pollution control pro-
grams, and others will begin in the next several years.
Along with some of the local and state efforts that are
ongoing in New Haven, there are also several federal
regulations that have recently been or soon will be imple-
mented. This project also sought to develop collabora-
tions and partnerships with state and local agencies in-
cluding government, academia, and the New Haven
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community. The New Haven modeling effort reported
here is part of a broader feasibility study to evaluate im-
pacts of regulatory and voluntary actions to reduce air
toxic emissions on human exposures and health.

In the New Haven modeling study, we used a hybrid
approach as described in Isakov et al.,31 in which we
combined the concentration from two air quality models
that were run independently. Average hourly concentra-
tions in the modeling domain encompassing the central
part of New Haven were extracted from the CMAQ model
and were added to the hourly concentrations calculated

by the AERMOD local plume model at 318 census-block-
group receptors in the same geographic domain. To pro-
vide local-scale variability, we calculated differences be-
tween an average value from a dispersion model for all
receptors within a grid cell and actual modeled concen-
trations at every receptor in a grid cell. Then, we added
CMAQ concentrations and dispersion model concentra-
tions. A schematic of the hybrid approach is shown in
Figure 2.

The CMAQ modeling system was run for an annual
period in a nested mode at 36- and 12-km horizontal grid

Figure 2. Schematics of the hybrid modeling approach showing (a) local impact from stationary sources, (b) near-road impact from mobile
sources, and (c) regional background from CMAQ.

Figure 1. New Haven, CT, modeling domain.
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dimensions using the 1999 National Emission Inventory
and meteorological outputs from 2001 using the MM5
meteorological model.42,43 The CMAQ model concentra-
tion reflects modeled regional background values and
concentrations due to any photochemical interactions in
the atmosphere. The AERMOD model uses detailed site-
specific information from the “bottom-up” emissions in-
ventory for highway vehicle exhaust and evaporative run-
ning emissions on roads,44 as well as local point source,
marine port, and airport emissions data, to provide this
resolution. Emissions of area sources and nonroad sources
not associated with ports and airports were assumed to be
uniformly distributed across the modeling domain and
were represented in CMAQ regional model simulations.
The AERMOD model estimated concentrations for several
toxics and criteria pollutants, but results presented here
are an illustration of this methodology for two represen-
tative pollutants, benzene and PM2.5. Benzene is represen-
tative of mobile-source-driven air toxic pollutants and
PM2.5 is representative of pollutants that can undergo
photochemical transformations.

A graphical illustration of the application of this hy-
brid approach using PM2.5-modeled concentrations in
New Haven is shown in Figure 3. Figure 3c shows the
geographic domain and the locations of the major high-
ways. The gray colors show areas of high concentrations

as predicted by the AERMOD dispersion model. As ex-
pected, higher predicted concentrations are near high-
emission sources such as marine terminals, interstate
highways, and large industrial sources. Lower concentra-
tions are predicted in the surrounding suburban areas.
Figure 3b shows predicted concentrations from the
CMAQ model at 12- by 12-km grid-cell resolution. In this
panel, CMAQ provides a uniform distribution across the
modeling domain. Figure 3a shows total concentration, in
which AERMOD concentrations are added with CMAQ
modeled concentrations. Figure 3a shows greater “tex-
ture” in the concentration field when AERMOD concen-
trations are added. This combined estimate also clearly
shows high concentrations at locations of major PM2.5

emitters.
The total concentrations predicted by the hybrid air

quality model were then used by the HAPEM and the
SHEDS models to predict exposures to benzene and PM2.5,
respectively. Spatial distributions of modeled benzene
and PM2.5 exposures are shown in Figure 4, b, c, e, and f.
For comparison purposes, spatial distributions of concen-
trations are also presented (Figure 4, a and d). Figure 4,
a–c, shows the spatial distribution of the annual average
concentrations and exposures (median and 95th percen-
tiles) for benzene, and Figure 4, d–f, shows 6-month sum-
mertime average (from April to September) concentra-
tions and exposures for PM2.5. This 6-month averaging
period was selected based on the CMAQ model evalua-
tion45 to exclude wintertime biases in the model results.
As can be observed from the figure, there is a strong
spatial gradient in pollutant concentrations and expo-
sures; as expected, higher values are observed close to
major highways. There are also large gradients near major
industrial facilities (ports) where there are high benzene
emissions from fuel storage tanks and marine vessels. At
the high end of the distribution (95th percentile), expo-
sures are generally higher than ambient concentrations.
They are also much higher in the central district than in
the suburbs, showing the importance of accounting for
commuting while modeling exposures. We also found
that the individuals living in the central area are typically
moving between MEs with high concentrations, whereas
the individuals residing at the edge of the city are not.

Figure 5 presents a comparison between annual aver-
age benzene exposures from the HAPEM model with mod-
eled annual average concentrations at census-block-group
centroids obtained using the hybrid modeling approach.
Figure 6 shows a similar comparison using the summer-
time exposure concentrations from the SHEDS model for
PM2.5. Two metrics of distributions are shown—median
and 95th percentiles of total inhalation exposure for all
population groups. For benzene, median values of the
exposure distributions are close to ambient concentra-
tions, but the tail of the distribution (95th percentile)
shows higher values (exposures are almost twice higher
than modeled ambient concentrations). In general, both
Figures 5 and 6 show that the exposure patterns are dif-
ferent than the predicted concentration patterns. Because
benzene can readily infiltrate indoors, median benzene
exposures are similar to ambient concentrations. How-
ever, exposure estimates from HAPEM are higher than the

Figure 3. Application of the hybrid modeling approach in New
Haven, CT: (a) combined results, (b) regional background from
CMAQ, and (c) local gradients from AERMOD.
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Figure 4. Maps of modeled (a) annual average concentrations, (b) median, and (c) 95th-percentile exposures for benzene. (d) Six-month
average concentrations, (e) median, and (f) and 95th-percentile exposures for PM2.5.

Figure 5. Comparison of benzene exposures from HAPEM model
with modeled ambient concentrations.

Figure 6. Comparison of PM2.5 exposures from SHEDS model with
modeled ambient concentrations.
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predicted ambient benzene concentrations at census
block groups, with greater influence of roadways because
of adjustments made to account for elevated residential
outdoor benzene levels for homes near roadways. In con-
trast, the relationship between modeled exposure and
predicted ambient PM2.5 concentrations are much differ-
ent. PM2.5 penetrates less efficiently indoors, thus expo-
sures to PM2.5 are typically found to range between 30
and 100% of ambient PM2.5 concentrations, depending
on the exposure percentile selected and the impact of
commuting.

To investigate the relative importance of several ex-
posure modeling features such as commuting and near-
road factors, we conducted a series of sensitivity tests in
which we ran the model with and without these features.
We also investigated the impact of using refined spatial
resolution in air quality and exposure concentrations. The
results for these sensitivity analyses for benzene are pre-
sented in Figure 7. Figure 7, a–c, shows the median values
of the entire exposure distribution, and Figure 7, d–f,
shows the 95th percentile. The median values are repre-
sentative of exposures to typical populations, whereas the
95th percentile is representative of higher exposed sub-
groups. The first sensitivity analysis (Figure 7, a and d) was
conducted to evaluate exposure concentrations from
HAPEM with two types of inputs: (1) using only a regional
grid model (CMAQ) to estimate air quality, and (2) using
air quality concentrations from the hybrid approach (e.g.,
CMAQ combined with AERMOD). The figure shows that
modeled exposures are much higher and have a wider
range when based on the hybrid approach than when
only based on the CMAQ results. This is observed for both
median and 95th percentiles of the exposure distribution.
This clearly indicates that providing spatially resolved
concentrations in air quality modeling can be quite im-
portant for exposure modeling.

The second sensitivity analysis was conducted to
evaluate the relative importance of the commute algo-
rithm in the exposure model. The need for incorporating
the effects of commute patterns is well recognized.23 As
can be seen from Figure 7, b and e, the modeled exposures
differ by approximately 10% for median percentile values
of the exposure distribution and 20–30% for the 95th
percentile of the distribution.; however, there is no clear
bias in either case. These results point out the importance
of the commuting algorithms in the modeled benzene
exposure concentrations. Ignoring the contribution of
commuting would result in as much as a 30% difference
in the benzene exposure estimates for certain population
subgroups.

The third sensitivity analysis (Figure 7, c and f) was
conducted to evaluate the relative importance of the near-
road algorithm in HAPEM. Many people live in the vicin-
ity of large transportation corridors in large urban areas
and this additional mechanism was included in HAPEM
because of recent interest in near-roadway exposures. As
shown in Figure 7, c and f, the near-roadway algorithm is
responsible for an approximate 20% difference in median
exposure distribution and almost a factor of 2 difference
for the 95th percentile of the exposure distribution. These
results clearly show the importance of including near-
road adjustment factors in HAPEM for populations resid-
ing near roadways. Results from all three sensitivity anal-
yses underscore the importance of developing a hybrid air
quality model along with exposure modeling that incorpo-
rates commuting and near-roadway factors as considered by
HAPEM6. However, further evaluation of these methods
with new or additional observations is still warranted.

Typically, exposure modeling has been conducted on
a census-tract level.37 To investigate the importance of
providing higher resolution in air quality concentrations
for use in exposure modeling, we conducted a sensitivity

Figure 7. Impact of key model components on exposure concentrations: (a–c) median and (d–f) 95th percentile of exposure distribution.
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analysis for benzene and PM2.5 at two levels of spatial
resolution—census tract and census block group. We used
the coefficient of variation (CV), defined as standard de-
viation divided by the mean multiplied by 100%, to esti-
mate the magnitude of spatial variability within each
census tract. CVs for each of the census tracts (for con-
centrations and exposures) were estimated at the census-
block-group level. Figure 8a provides a spatial map of
benzene concentrations at census-block-group centroids.
The map shows a wide range of concentrations in the
study area and high values near major highways. The CVs
for concentrations (Figure 8b) show values ranging from
less than 10% to up to 100% in different parts of the
modeling domain. A similar feature is observed for the
CVs for the 95th percentile of the exposure distribution
(Figure 8c). These results indicate that in urban areas there
are locations where there are high ambient and exposure
concentrations attributable to the presence of large emit-
ting sources that create hot spots, and that a higher spatial
resolution than census-tract level (e.g., census block
group) is informative and desirable for assessing the im-
pacts at the community or intraurban level.

Finally, we investigated whether the predicted expo-
sure-to-concentration ratios (E/C) were consistent across
the study area (as assumed by most ambient monitoring-
based time-series epidemiological studies), so that ambi-
ent concentrations could be used as a reliable surrogate of
personal exposures in air pollution health effect studies.
However, our analysis indicated that the range of variabil-
ity in the E/C ratios for benzene (Figure 8d) were spatially

variable and went up to 30% across the modeling domain.
In particular, we found that spatial variability within cen-
sus tracts for benzene was significant. The key factors
influencing this variability were determined to be the
relative size and geometry of the census tract and prox-
imity to (mobile or point) emission sources. The spatial
variability in the summertime average concentrations and
exposures of PM2.5 are shown in Figure 9. Similar to ben-
zene, this map shows a wide range of concentrations in
the study area and high values near major highways.
However, spatial variability within census tracts for PM2.5

is smaller than for benzene. The CVs for PM2.5 concen-
trations range from less than 10% to up to 70% in differ-
ent parts of the study area. The CV for 95th-percentile
exposures are typically smaller but could be as high as
50% depending on size of the census tract and nearby
influences from roadway or point sources. The CVs for the
E/C ratios are also small (�30%) and similar in spatial
distribution of the exposure coefficients. Overall, these
results indicate that the hybrid modeling analysis linked
with exposure modeling tools yields more detailed infor-
mation on exposures than can be obtained by using cen-
tral site monitoring data alone in conducting cohort or
community-level air pollution epidemiological studies.

SUMMARY
The extent of variability in spatial and temporal concen-
tration gradients associated with large point sources and
roadways presented here is especially important given the
growing body of literature on the potential adverse health

Figure 8. (a) Spatial map of annual average benzene concentrations at census-block-group centroids, (b) CVs for concentrations, (c) CVs for
the 95th percentile of the exposure distribution, and (d) range of variability in the E/C ratios for benzene. (CV � SD/mean � 100%).
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effects associated with elevated concentrations that can
occur near these sources. In this analysis, we presented a
methodology for using a hybrid modeling approach
whereby ambient air quality estimates from the CMAQ
photochemical grid model are combined with the AER-
MOD dispersion model to provide hourly air quality esti-
mates for multiple pollutants at the census-tract and cen-
sus-block-group levels. This hybrid air quality modeling
approach combines the advantages of both air quality
models to provide higher spatial resolution than can ob-
tained from either model alone. These hybrid modeled
concentrations were then used in driving the two differ-
ent EPA exposure models, HAPEM and SHEDS. We deter-
mined that the local detail provided by this hybrid mod-
eling approach can enhance the analysis of spatially and
temporally resolved exposures within a community.

In this study, several assumptions were made that
should be re-examined in future applications. For exam-
ple, the emissions inventory must be consistent when the
results from the AERMOD model are added to the CMAQ
model. In particular, meteorological data periods must be
consistent between AERMOD and the CMAQ models and
any monitoring data periods needed for model evaluation
purposes. Because model evaluation is a critical part in
any modeling study, the air quality models used here
have been previously evaluated in various settings.43–45 In
contrast, however, evaluation of exposure models have
been limited because of the paucity of studies that collect
indoor, outdoor, and personal exposure measurements,
along with air exchange information.46 Clearly there is a

need for more evaluation of the key exposure model com-
ponents (e.g., microenvironmental and roadway proxim-
ity factors) in future research.

In addition, estimating uncertainties is an integral
part of the health risk assessment process. It is, therefore,
desirable to incorporate some treatment of uncertainties
in the entire modeling process, including emissions and
meteorological inputs, model formulation, monitoring
data, and exposure and risk. In this study, a major con-
tribution to the uncertainty in the model simulation re-
sults originated from the model inputs rather than from
the model formulation. Therefore, to reduce uncertainty
in the high-resolution concentration fields, it is impor-
tant to improve spatial allocation of emissions. For
mobile sources, we have developed a practical, readily
adaptable methodology to create a spatially resolved,
link-based highway vehicle emission inventory. This
methodology takes advantage of GIS software to improve
the spatial accuracy of the activity information obtained
from a Travel Demand Model. An example of application
of this methodology in New Haven, CT, is shown in Cook
et al.44 Therefore, it is desirable to incorporate some treat-
ment of uncertainty in the entire modeling process, in-
cluding emissions, meteorological inputs, model formu-
lation, and exposure.

The models provided in this paper can serve as pro-
totypes for air quality and exposure assessments in future
community air pollution health studies. The air quality
models can be used to provide the baseline air quality for

Figure 9. (a) Spatial map of 6-month average PM2.5 concentrations, (b) CVs for concentrations, (c) CVs for the 95th percentile of the exposure
distribution, and (d) range of variability in the E/C ratios for PM2.5 (CV � SD/mean � 100%).
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future assessments of impacts because of regional- or lo-
cal-scale air pollution control measures. These same mod-
els can also be used to estimate the projected air quality
and exposures for future years that are dependent on air
pollution reduction activities or are due to the addition of
new sources in a community. Projected future air quality
and exposure model results can then be used to estimate
the likely impact of air pollution control measures on
human exposures and health in the community, as car-
ried out in the New Haven air accountability feasibility
project.
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